Tutti sappiamo come si è formato un medico: libri e articoli, ore e ore sul campo. Il modo in cui funziona l'intelligenza artificiale è meno intuitivo. Abbiamo deciso di chiarirlo, anche perché l'AI sarà sempre più importante per la diagnostica. È questo il ragionamento che ha spinto Quartz a fare un esperimento: allenare due algoritmi a riconoscere un cancro ai polmoni. In un paio d'ore.
L'esperimento
Diciamolo subito: un “medico artificiale” efficiente ha bisogno di più tempo e molti più dati. Il test, condotto grazie al co-fondatore della startup MD.ai Leon Chen e al radiologo Luke Oakden-Rayner, vuole dare un'idea di come funzionino questi “cervelli”. Che presto potrebbero salvarci la vita. Se un oncologo impara dai manuali e dall'esperienza, l'intelligenza artificiale apprende solo dai dati: circa 190.000 immagini, bidimensionali e in 3D, con noduli maligni, benigni o privi di qualsiasi formazione. Un nodulo è un piccolo pezzo di tessuto di tessuto che non è normalmente presente nei polmoni. Già individuarlo non è semplice. Perché è piccolo e spesso poco visibili. E può essere confuso con altre formazioni. Poi il passo successivo: saper distinguere tra un nodulo maligno e uno che non lo è.
Cosa impara l'AI in 75 minuti
Dopo una ventina di minuti e dopo aver digerito le prime 50.000 immagini, l'algoritmo inizia a dare i primi risultati (ancora scarsi). Individua correttamente circa il 46% dei noduli. Ma non ha ancora cognizione di cosa siano di preciso. A volte, infatti, confonde i vasi sanguigni con un possibile cancro. Dopo mezz'ora, gli algoritmi hanno analizzato 95.000 radiografie. Riescono a individuare il 60% dei noduli. E nel 69% sono in grado di dire con esattezza se sono maligni. “In questa fase, il sistema ha un'estrema sicurezza quando rileva noduli di grandi dimensioni (oltre il centimetro di diametro)”. Mentre “non ha ancora imparato alcune nozioni semplici”.
Anzi, molto semplici. È tarato solo per riconoscere i noduli polmonari, ma non sa cosa sia esattamente un polmone. Individua quindi formazioni in zone del corpo dove i "noduli polmonari" non possono esserci. Per il semplice fatto che sono, appunto, polmonari. In altre parole, spiega Quartz: l'intelligenza artificiale è priva di buon senso perché si attiene ai soli dati. A questo stadio, quindi, combina risultati discreti con falle elementari. “Anche un bambino di tre anni sa distinguere pancia e petto". L'AI invece "non sa cosa siano”. A tre quarti dell'esperimento, dopo quasi un'ora e 143.000 immagini, l'intelligenza artificiale comincia a possedere la materia. Ed evidenzia risultati che Quartz definisce “piuttosto buoni”. Ha ancora difficolta a individuare i noduli (l'accuratezza è del 64%). Anche in questo caso, la pecca è la mancanza di buon senso. Il medico artificiale indica noduli in zone dove è molto raro che ci siano.
Confondendoli spesso con piccole cicatrici. Un medico umano, in questo, è molto più efficiente. Inizia a essere significativa l'accuratezza delle formazioni maligne: 76.38%. Fine dell'esperimento, dopo 75 minuti e oltre 190.000 immagini. L'accuratezza nell'individuazione dei noduli sfiora il 68%. E la capacità di capire quali sono maligni è dell'82.82%. L'intelligenza artificiale è migliorata ancora. Ancora troppo spesso i noduli vengono scambiati con altro. Ma, quando succede, l'AI giudica la formazione benigna. “La risposta terapeutica per il paziente – scrivono gli autori del test – sarebbe quindi simile”.
Conoscenza ed esperienza
“L'intelligenza artificiale funziona molto bene, anche se non è ancora al livello di un radiologo”, conclude Quartz. Molto dipende da un corredo di dati ancora troppo esiguo. Ma se questi sono i risultati ottenuto in meno di due ore e con 190.000 immagini, pensate cosa potrebbe fare un sistema più complesso, con un archivio fatto di centinaia di migliaia di contenuti. Come quelli prodotti ogni giorno da cliniche e ospedali.
Allo stesso tempo, l'esperimento sottolinea i pregi dell'uomo, in grado di usare “le conoscenze pregresse come un'impalcatura”. L'intelligenza artificiale, invece, ha bisogno di costruirla ogni volta. E può farlo solo grazie a una mole enorme di esempi. In questo caso ne sono serviti 50.000 per “insegnare” alle macchine quello che uno studente imparerebbe con un solo manuale. Solo che nessun medico è in grado di leggere un libro in 17 minuti. Il futuro della diagnostica dipenderà dalla capacità di fondere le doti di ognuno: la conoscenza umana con l'esperienza artificiale.